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1. INTRODUCTION

Increasingly there is a need to more accurately predict the viscous
resistance on ship hulls, particularly in 1light of modern-day fuel
costs. The rapid increase in fuel costs cries out as a mandate
to ship-hull designers to reduce hull resistance, both wave-making
and viscous. Experience has shown that significant advances in
design efficency often require more sophisticated design tools,

and in today's environment, particularly those of the computational
variety.

Airplane and missile designers have had a great deal of success in

developing and utilizing the concept of the "numerical wind tunnel".

As both computational algorithms and accurate englineering sets of
equations describing turbulent fluctuations and stresses have been
developed and improved, so has the ability to replace expensive
wind-tunnel tests by a series of computer runs. In addition to
being relatively inexpensive, such numerical simulations can more
exactly simulate full-scale flow conditions than can wind-tunnel
tests.

In the ship context there 1s just as pressing a need to replace
expensive tests by numerical simulations. In fact, in light of the
inherent contradiction involved in trying to simultaneously match
Froude and Reynolds numbers, then is an even more pressing need to
utilize the "numerical towing tank" in the design process.

The state of the art of numerical simulations, including viscous
effects, 1s further advanced in the aerodynamlic context then 1t is
in the hydrodynamic case. Conceptually this 1s sensible as the
flow past a ship hull involves a free surface and 1s inherently
three dimensional while, by contrast, much of the flow area over

an airplane wing involves a homogeneous fluid and can be treated

as two dimensional. This two dimensionality has been of especial
value to aerodynamicists as they have been able to justify focusing
on two-dimensional flows. A great deal of progress in improving
computational efficiency has been made because of the relative

............




simplicity of a two-dimensional computation, progress which would
have been much harder to achieve i1f the aerodynamicist's primary

application had demanded focusing on three dimensionality. As a

result, computing separated flows can be done today1 at less than
a percent of the cost seven or eight years agoz. And, of course,
these methods are now being implemented in three dimensions.

Even 1in three dimensions the aerodynamicist has an easier time of
i1t than the hydrodynamicist because he needn't deal with a free
surface. Nevertheless, the day of the numerical towing tank draws
nearer and nearer. The purpose of this project has been to help
in hastening the arrival of the numerical towlng tank.

To accomplish this end, we have addressed the viscous portion of

the problem. We have applied a wldely-tested two-equation model

of turbulence (Section 2) to (a) real ship hulls and (b) "thick"
turbulent boundary layers on submerged axisymmetric bodies. The
object of the ship-hull computations has been to test the model's
accuracy in the 1limit of classical "thin-shear-layer" approximations.
The latter computations have been done as an attempt to pinpoint

the special characteristics of and to test the model for "thick"
boundary layers.

In performing the analysis we have developed a new three-dimensional
boundary-layer program appropriate to arbitrary ship hulls. A great
deal of the effort in this project focused on devising an accurate
numerical procedure compatible with the turbulence model equations.
Section 3 presents details of the algorithm including a detailed
accuracy study.

In Section 4 we present results of the two ship-hull computations,
including comparison of computed and measured flow properties.
Section 5 includes details of our thick-boundary-layer study. Re-
sults and conclusions follow in Section 6. The Appendix includes
computer-program listings and an explanation of program input and
output.
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2. EQUATIONS OF MOTION

In this section we describe the Wilcox-Rubesin3 two-equation model
of turbulence. First we summarize the equations of motion in-
cluding all closure coefficients. Then, we state the boundary
conditions appropriate to smooth and rough surfaces.

2.1 THE TURBULENCE MODEL

For an incompressible fluid of density, p, and kinematic viscosity,
v, we must solve the equations of mass and momentum conservation,

viz, ;
u
i .
Bxi = 0 (1)
Ju Ju
_1._13 9 1
uy axJ o 3x, + axj [ v 3xJ + Tid] (2)

where steady flow conditions have been assumed. In Equations (1-2),
uy and e denote velocity and position vector, p is static pressure
and TiJ is the Reynolds-stress tensor. To close the system, Tij is
:ssumed proportional to the mean strain rate tensor, Sij’ wherefore

2

TiJ = 2e:SiJ - §k61J (3)
where u du
- i J

Sij =% (axj + axi) (4)

The quantity k is turbulent mixing energy and e is kinematic eddy
viscosity. The latter is defined in terms of k and the turbulent
dissipation rate, w, by

Yr*k/w (5)

€

where y* is a closure coefficient. Finally, the turbulence para-
meters k and w satisfy the following equations.

ou
ok i ] ok
u,=—— = T —= - B¥uk + _[(\) + o’*e) .___.] (6)
JaxJ 13 axJ axJ axJ

>,

..........................
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Ju
dw? w? 1 [ 3z 2] 3 ) [ duw?
UysT— = Y 7T T 3%~ | B * 20 (530) w + =— | (vtoe) z— (7)
Jiix'_J k iJ axJ axk axJ axJ
where £ is the turbulent length scale defined by:
2 = k%/w (&)

Equations (5-7) contain six closure coefficients, viz, B, B¥, vy, v¥*,
o and o%*, The values of these coefficients have been determined
from very general arguments based on widely observed properties of
turbulent flows. The values used in the present study are:

= 3/20 H g* = 9/100
o =X ; o* =% (9)
10 2
yy*¥ = _5-[1-(1-A )exp(-ReT/“ﬂ
where A= —%

In Equations (9), the gquantity Rep is the Reynolds number of the
turbulence defined by

e
_ k% k
ReT = 5 —-— (10)

2.2 DBOUNDARY CONDITIONS

Application of the no-slip boundary condition yields

ui = 0
at solid boundaries (11)

k =20

The boundary conditions for w approprilate to smooth and rough sur-
faces have been shown by Wilcox and Traci!4 to be

w - 22% as y =+ 0 5 Smooth Surface

By

< u% (12)
w = — at y = 0 ; Rough Surface

VB¥

where u, is friction velocity and S is a function of dimensionless

----------------------
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roughness height k+ uTk/v defined by

s = (36/kM)° + (8/1h)* (13)
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Equations (1-13) completely define the turbulence model and
surface boundary conditions. All analysis in this project hac
v been done using Equations (1-13).
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3. NUMERICAL CONSIDERATIONS

Because our primary interest in this projJect is 1n three-dimensional
boundary layers, a substantial effort has gone into devising an
accurate, stable and efficient numerical procedure for solving
Equations (1-13) in the 3-D boundary layer. Few computer programs
have been developed with sufficient generality for arbitrary ship-
hull applications and we have, in effect, developed such a pro-

gram from scratch.

Cur original starting point was a generalized version of the 3-D

boundary-layer program developed by Cebecl, et a15. The r. 'rical
procedure embodied in the program 1s based on Keller's6 " x Method".
After a great deal of numerical experimentation and frust <tion,

weé have concluded that the Box Method is incompatible wit -

turbulence-model equations.

This 1is not to say the Box Method i1s deficient as a numerical scheme.
On the contrary, the method has proven to be very efficient and very
accurate in many applications. However, advanced turbulence models
such as the one being used often require special numerical treatment.
Over the years, we have found that many excellent, proven, numerical
schemes just don't work well in solving the equations attending

such a model. We now know the Box Method falls into this category.

To remedy this problem, we have completely rewritten the program.
It now embodlies a numerical method which has proven compatible with
the turbulence model. In the following sections we first discuss
the new numerical method. Next, we show typlcal numerical results
for a flat-plate boundary layer, including comparisons with exper-
imental data. Finally, we present results of a numerical accuracy

study.

3.1 THE NUMERICAL PROCEDURE

For many years we have obtained accurate two-dimensional boundary
layer solutlons for our model equations using the classical Blct-
7 method. Hence, we decided to extend the method to three

tner
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dimensions in hopes it wo»'2 .scialin 1ts desiratle stability ard

accuracy char__teristics. Before embarking on such a major re-
programming effort we made a brief review of Blottner's more re-
cent work. We found that, as an improvement to his original prc-
cedure, Blottner8 has devised his "Variable Grid" algorithm. Thic
revised method offers far greater accuracy than his original methcd,
particularly for very coarse finite-difference grids. We decided

to use the improved algorithm.

In essence, the "Variable Grid" method uses a conservation form
treatment for diffusion terms. That 1is, in the original Elottner

method, diffusion terms must first be expanded according to:

Q

4+ —
2 dy 9y

(eé_g) = €

3%u de du
oy PR (14)

|
<

Then, central difference approximations are used for Ju/dy, d¢/dy,
and 3%u/dy?. By contrast, in the improved Blottner method, we write
directly (subscripts denote mesh point number):

[Ledy], - PR LT B B (15)
9y " Tdy Jy @(ij + ij_I)

6uj+% = (uj+l - uj)/AyJ (1€)
and similarly for (du)J-%‘ The quantity ij = yj+1 - yJ is the

incremental change in the normal coordinate y. As will be shown

in Subsection 3.3, this straightforward modification permits much
greater stretching of the grid normal to the surface than is pos-
sible with the original Blottner method.

Thus far, we have spoken only of the direction normal to the sur-
face. Because the three-dimensional boundary-layer equations have
a real characteristic which 1s not necessarily aligned with the
freestream flow direction, any accurate numerical procedure must

be consistent with the attending zone of dependence. The original

Box Method does not treat this problem properly and to avoid



future difficulties we decided to accomodate the zone-of-dependence
feature in the revised numerical scheme. In an unpublished study,
Wilcox and Jamesg devised a family of explicit, unconditionally
stable marching methods which potentially could deal with this
problem. A review of that study showed that most of the family
were of first-order accuracy. However, one of the most promising
of the family 1s second-order accurate. Another brief review of
boundary-layer literature showed that thls scheme has been used by
many others in three-dimenslonal boundary-layer applications. The
scheme is attributed to Krauselo. We have opted to use Krause

scheme 1In the revised program.

The essence of the Krause procedure 1s the manner in which cross-
flow convective terms are treated. As an illustration, the term
wou/9z (where u and w denote streamwise and crossflow velocity
components and z 1s the crossflow coordinate) is discretized

according to: u
i-1,k+1

- u u - u
_ i,k i,k-1
(wau/az)i_%,k = wi-%,k ( 15 L, 2 )

i-1,k
iz
k k=1 (17)

where 1 and k denote mesh point number in the x and 2z directions,
respectively, Azk = Zp41 " 2y and the finlte-difference molecule

is as shown below.

(1~1,k+1) 7 Centered Here
| (i-%:k)
|

(1-1,k) b= ¥ --p (1,0

6 (isk-l)

This scheme 1s unconditionally stable for positive crossflow
(w > 0) and conditionally stable for negative crossflow (w < 0),
the stability condition beilng:

wix 4 (18)

..........
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Thus, for equally spaced mesh points (4x = Az), this scheme is
stable for negative crossflow angles up to 45 degrees from the

,/'.':-./;."-fs"«'

streamwise direction.

L
-

SES 3.2 PRELIMINARY TEST OF THE REVISED PROGRAM
-7
%S A key difficulty encountered with the Box Method was the presence
i ‘ of large round-off errors in the equation for w?. Even when we
ﬁE' devised a special procedure to eliminate these errors (caused by
_{i the numerical method's inability to accurately compute the rapid
:f’ variation in w? as y » 0), nontrivial oscillations in properties
\ such as skin friction remained. All of these difficulties were
,;EE encountered for the simplest boundary-layer of all, the two-
i:ﬁ dimensional flat-plate (constant pressure) boundary layer. Hence,
ﬁ%g as a preliminary test of our revised 3-D boundary-layer program,
s which we will refer to as EDDY3, we focus on the flat-plate boundary
%& layer. We have done two somputations, the first for a turbulent
:S case and the second for a transitional case.
&
; > The first computation was initiated from approximate profiles at
fy' a plate-length Reynolds number, Re , of one million. Using 40
-;3 equally spaced streamwise steps, the computation proceeds to a
}é plate-length Reynolds number of five million. Thils means the ratio
. of streamwise stepsize to boundary-layer thickness ranges from 1.3
‘ng to 6.8. Such large steps are comparable to those used in mixing-
'ﬁk length computations. Only 61 mesh points were used normal to the
Ziﬁ surface with the grid-point incremental spacing increasing in a
i geometric progression with a progression ratio of r = 1.11.
;iﬁ Figure 1 compares computed skin friction, Cps and momentum thick-

. ness Reynolds number, Ree, with the Karman-Schoenherr correlation.

.ﬁb As shown, both Cp and Ree virtually duplicate the correlation.
‘Ca Figures 2 through 4 compare computed velocity, turbulent dissipa-
L9 1A
SQ tion rate and turbulent mixing energy profiles with corresponding
QEE exact theoretical asymptotic sublayer and wall-layer (log region)
eﬁ' profiles. In all cases, the numerical predictions clearly fall
) -9—
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Figure 1. Comparison of computed and

measured skin friction and
momentum thickness for a flat-
plate boundary layer; 61 mesh
points and r = 1.11.
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very close to the asymptotic profiles, thus verifying the accuracy
of the revised numerical procedure in the absence of crossflow.

For our second test we begin with laminar flow and integrate all

the way through transition to test whether c,. oscillations attend

f
such a computation. As shown in Figure 5, the revised program
displays no such oscillations. Again, the geometric progression

ratio used was r = 1.11.

In conclusion, the success achleved in these two flat-plate cases
leaves us confident that we have a numerical procedure which is
at once stable and accurate. While these computations fail to
test the program's ability to handle reverse crossflow, the ship-
hull applications of Section 4 indicate no difficulties are en-
countered, even with very large crossflow velocities.

2.3 NUMERICAL ACCURACY STUDY

Before proceeding to more complex applications, it 1s instructive

to examine the sensitivity of EDDY3 computations to grid-point
spacing. One of the most remarkable features of the revised
program 1s that in past two-dimensional computations, at least 200
mesh polnts would have been needed to achieve mesh-independent solu-
tions for an Rex of five million. This 1s true because the original
Blottner method 1s of questionable accuracy for values of r in ex-
cess of 1.04. To test the program's accuracy, we performed a series
of turbulent flat-plate boundary-layer computations in which r was
increased all the way to 1.40. To establish a baseline solution,

we used our two-dimensional program to compute the flow of Sub-
section 3.2 with 200 mesh points and withr = 1.03.

Figure 6 shows the percent error in skin friction as a function of
the progression ratior. Remarkably, even with an r as large as
1.40 the cp error 1s only 8.5 percent. Values of r less than 1.14
yield skin friction errors less than 2 percent.
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Figure 7 recasts the percent error in skin friction in terms of
mesh point number. As shown, solutions are more or less mesh

independent beyond about 60 mesh points.
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4., SHIP-HULL APPLICATIONS

We turn now to computation of the three-dimensional boundary layver
on two ship hulls, viz, the SSPA Model 720 and the HSVA Tanker.
These are the two test cases included in the 1980 SSPA-ITTC
Workshop on ship boundary layersll. For the SSPA Model 720 we
perform three separate computations to test EDDY3's ability to
handle reverse crossflow and sensitivity for grid point spacing.
Then, the HSVA Tanker computation is done Just once on an optimized
grid.

The surface finite difference grid is nonorthogonal and PROGRAM
SHPMSH (see Section A.l1 of the Appendix) is used to generate the
grid. Also, PROGRAM VELOC (see Section A.2 of the Appendix) is
used to interpolate inviscid velocitles onto the nonorthogonal
grid.

4,1 SSPA MODEL 720
b,1.1 Effect of Girthwise Integration Direction

All of the computations performed use the Workshop-supplied Douglas-
Neumann12 inviscid velocity distribution. In all cases, computation
is initiated from fully-turbulent boundary-layer profiles at 2x/L =
-0.6 (L is the hull half length). The profiles used match the
measured momentum thickness and skin friction. For the computations
of this Subsection, the finite-difference mesh consists of 51
equally-spaced points extending from 2x/L = -0.6 to 2x/L = 0.9,

11 equally-spaced points (in terms of girth) in the girthwise direc-
tion, and an average of 40 points normal to the surface. Thus, the
mesh consists of about 22,000 points. Consistent with the Douglas-
Neumann computation, both the keel line and the wateriine have

been treated as symmetry planes.

To further test the program's numerical formulation, we perform
the computation in two different ways. First, we perform the
girthwise integration starting at the keel and integrating toward
the waterline on each streamwise plane (section). Then, we repeat
the computation integrating from waterline to keel. Doing both

-19-
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computations checks numerical-algorithm consistency and the pro-
gram's ability to handle reverse crossflow.

Inspection of key flow properties shows virtually no difference
between the two solutions through the entire flowfield. This
confirms that the program is indeed able to handle reverse cross-
flow in a stable and accurate manner. It also confirms that over-
all the algorithm 1s consistent wit:.. the parabolic nature of the
boundary-layer equations.

4,1.2 Effect of Mesh Refinement

In the next computation we use 81 mesh points in the streamwise
direction, half of which lie between 2x/L = 0.5 and 2x/L = 0.9.
A total of 21 equally-spaced points lie in the girthwise direc-
tion with an average of 75 points normal to the surface. This
mesh consists of about 128,000 points, almost six times the
number used in the computations of Subsection 4.1.1. The girth-
wise integration 1s carried out from keel to waterline.

A detailed compariscn of corresponding flow properties for the
22,000- and the 128,000-mesh-point computations shows that over-
all flow properties differ by about 3 percent. Even in regions
of rapld change, differences never exceed 5 percent. These ob-
servations are consistent with our accuracy study for the flat-
plate boundary layer which indicate that, on the one hand, using
40 points normal to the surface yields a little over 3 percent
error while, on the other hand, uslng 75 points results in about
0.6 percent error. The 5 percent discrepancies almost certainly
attend the difference in streamwise resolution between the two

computations.

Results of this numerical test indicate there is little point in
using a mesh as fine as the one with 128,000 points if economy
1s a factor. That 1is, our 22,000-point computations require ap-
proximately 20 minutes on a UNIVAC 1108 while the 128,000-point
computation requires about 90 minutes. Note that the increase
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in machine time is slower than linear because use of the finer
mesh 1s attended by fewer iterations in the solutlon procedure
at each mesh point.

4.,1.3 Comparison of Computed and Measured Momentum Thickness

In all three computations, we predict boundary-layer separation
over a portion of the hull beyond 2x/L = 0.77. Although no sep-
aration appears to have been observed experimentally, one should
also note that the experimentally observed boundary layers did
not experience as strong an adverse pressure gradient as those
predicted by the Douglas-Neumann computation.

Figure 8 compares computed and measured momentum thickness, 6,
on three lines along the hull. Line A 1is the keel line. Line E
is a line well below the waterline where the boundary layer is
more-or-less of the classical "thin" variety. Line C is closer
to the waterline and the boundary layer approaches the more com-
plicated "thick" structure.

Along Line A, the boundary layer is truly three dimensional as

exhibited by its curious behavior approaching the stern. Speci-
fically, desplite entering a region of adverse pressure gradient,
the momentum thickness decreases. Thls behavior occurs because
of large flow divergence near the stern. While the computed 6

lies about 25 percent above measured values, note that our pre-
dicted curve 1is much closer to the data than those of virtually
all Computors in the SSPA-ITTC Workshop on Ship Boundary Layers,

most of whose curves were high by a factor of two!

Along Line B, we exhibit somewhat larger differences from the
measured values. Computors in the Conference generally came
closest to experimental data on this line. Our prediction 1s
about average relative to Confererice participants'.
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On Line C, our predicted curve follows measured values qulite
closely up to about 2x/L = 0.5; beyond this point we predict a
slower-than-measured increase in momentum thickness. This 1s
unsurprising as no provision has been made to accomodate any
"thick" boundary-layer phenomena. Our prediction 1is much closer
to the data than most Conference participants’'.

4.2 HSVA TANKER

As with the SSPA Model 720, we use the Workshop-suppllied Douglas-
Neumann invisecid velocity distribution. Computation 1s initiated

from fully-turbulent boundary-layer profiles at 2x/L = ~0.80. Again,
the profiles used match the measured momentum thickness and skin
friction. The finite-difference mesh consists of 70 points in the
streamwise direction extending from 2x/L = -0.80 to 2x/L = 0.90,

15 equally-spaced points (in terms of girth) in the girthwise
direction, and an average of 60 points normal to the surface. Figure
9 compares computed and measured momentum thickness on three sections,
viz, for 2x/L = -0.744, 0.291 and 0.502. The numerical boundary
layer separated over a substantial portion of the hull at 2x/L = 0.75,
so that comparison with momentum-thickness data at 2x/L = 0.884 is

not possible. Note that the absclssa, 2z, 1s the nondimensional

girth with z=0 on the keel and z=1 on the waterline. Overall
differences between computed and measured 6 are similar to those
obtained for the SSPA Model 720.

In summary, we have tested EDDY3 on two ship hulls and encountered

no significant numerical difficulty. Separation on both hulls is
almost certalnly caused by the use of the Neumann inviscid veloclties,
so separation is discounted as a numerical problem. The differences
observed between computed and measured momentum thickness, although
generally much smaller than those of Workshop participants, are

too large for general englneering applications. Thus, our predictive
ability requires further improvement before a ship designer can

apply a program such as EDDY3 with any degree of confidence.
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Inspection of Figures 8 and 9 indicates our predictions differ

from measurements most significantly as we approach the stern.

This 1s unsurprising because, on the one hand, we expect the
boundary layer to become "thick" so that classical thin-shear-layer
approximations become suspect while, on the other hand, our compu-
tations have been done with classical thin-shear-layer approxima-
tions. In the next section, we address the question of how well
our model equations predict properties of "thick" boundary layers
if we abandon the thin-shear-layer limit.
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5. ANALYSIS OF THE THICK BOUNDARY LAYER

In this section we address the thick boundary layer by computing
three axisymmetric flows in which boundary-layer thilckness becomes
large relative to the body radius. First we use perturbation methods
to show that model equation solutions are corsilistant with the Rac

and Richmond scaling laws for axisymmetric boundary layers. Then,

we compute flow over a thin cylinder (wire) and compare computed

and measured flow properties. Next, we ccmpute flow over two
axlsymmetrlic bodles using both measured surface and boundary-layer-
edge pressure distributions and deduce that including 8p/dy in a
thick boundary layer computation will account for most of the observed
differences from thin layers. Finally, we devise an integral methcd
for computing 9p/dy in a thick axisymmetric boundary layer.

5.1 PERTURBATION ANALYSIS

The two most noteworthy scaling schemes for axisymmetric boundary

13 and Richmondlu. In Subsections 5.1.1

and 5.1.2 we use perturbation methods to show that the Wilcox-

layers are those of Rao

Rubesin model is consistent with Rao's scaling in the viscous sub-
layer and with Richmond's scaling in the wall layer.

5.1.1 Sublayer Scaling

For an axisymmetric boundary layer with constant pressure, close
to the surface the Wilcox-Rubesin model simplifies to:

r(v + y*e)%% = roui (19)
;_d_[ 95] - du,?

gy (v + o*e)rdr y¥*e (dr) - B¥*wk (20)
14d dw? ] du? A ds 2] 3

T ar [ (v + oe)ra;— = YW ga; - [e + 20 (EF w (21)

where v and € denote molecular and eddy diffusivity, r is radial

distance, u 1s velocity, ry is body radius and U, iIs friction

velocity.
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Deep in the sublayer, the eddy viscosity can be neglected, i.e.,
€ << v. Then, if we nondimensionalize according to:

= 2
K k/uT

W

2
vw/uT

o
n

u_/v
T (22)

r+ =y /v
o) e

_ 4
Y = r  log (r/ro)

substituting Equations (22) into Equations (19~21) yields

qu/dy = 1 (23)

d2K/dY? = v#K/W - B*WKexp(2Y/r;) (24)

a*w?/ay? = yw - 6w3exp(2Y/r;) - 20(dL/dy)?w? (25)

For the most experimental measurements made on flows of this type
the non-dimensional radius, r;, is very large so that

exp(2Y/r;) =1 + O(l/rz) (26)

Thus, in the limit r; >> 1, Just as in the two-dimensional case it

is easlly verified that the production terms, Y¥*K/W and YW, and
the term in Equation(25) proportional to (dL/dY)? are negligible.
The solution to Equations (23-25) is then trivially shown to be

U=y
W= 20/(BY?) (27)
E ~ Y*

Writing the dimensional equivalents of Equations (27) yields the
following:
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k. +
E u/u_ = r log(r/r,)
@ 2 o T e
} \)w/u,t 20v/ |B(log ro)} (28)
: k/us ~ (rjlog rO)
1
® The velocity profile predicted in Equations (28) 1s precisely that
) given by theRao scaling. To test the limiting u/uT asyvmptotic form,
‘; we have examined results of a numerical computation for flow past
a thin cylinder aligned axially with the freestream (complete details
® of the computation are given in Subsection 5.,2). For the data sum-
: marized below in Table 1 we have r; = 667.8. As indicated, although
{ the effect is small because of the large value of r;, the numerical
; u/uT agrees with the values predicted by the first of Equations (28)
‘ to three decimal places. Thus, the analysis 1s self consistent.
H
; Table 1. Comparison of Computed & Predicted
) Sublayer Velocity Profiles
?’- +
: uTy/v rolog(r/ro) (u/uT)Computed
!
i 0.6056 0.6053 0.6054
| ® 1.235 1.234 1.234
1.889 1.886 1.886
2.568 2.563 2.563
3.274 3.266 3.266
¢ 4.007 3.995 3.995
4.769 h.752 4.752
f 5.1.2 Wall-Layer Scaling
X

We turn now to the wall layer, viz, the region sufficiently close to
the surface for convective terms to remain negligible yet far enough
that the molecular viscosity can be neglected relative to the eddy

L. ] viscosity. Thils is the classical law-~of the wall reglon for planar
boundary layers. We again nondimensionalize according to Eguations



< (22) with the exception that our normal coordinate is redefined as

v follows.
{
+ +, +
‘::: Y=y (1+y /ro) where y = (r - ro) (29)
s
;ﬁ: The wall layer is most conveniently analyzed by treating U as the
QQ dependent variable. Dropping molecular viscosity in Equations

(19-21); the equations for the wall layer are:

N + _

5 (1 + 2Y/r_) (K/W)du/dy = 1 (30)

- 2 2 _ +y 2
ans o*d’K/qu? = B*(1 + 2¥/r_ )k* - 1 (31)
o \
E-.'; od?w?/qu? = B(1 + 2Y/r;)1‘?w2 - YW?/K + 20(dL/dU)2W*/K (32)
L
s In the limit of very large rz these equatlions are identical to those
8
AN for planar boundary layers. From Equation (31) there follows

et

?{; immediately:
E;i +

’ =1 + 1
. E /VB¥ + 0(1/r) (33)
"‘:‘0
\§3 Substituting Equation (33) into Equation (32), the solution for W
LA
‘Rﬂ becomes (noting that the closure coefficients have been chosen to
‘f insure that v = B/B* -~ 20x?//B¥ where k 1s Karman's constant):

l“\‘

X

] _ 1

~E§ W= - TF exp(- kU) (34)
by ,
- Finally, substituing Equations (33-34) into Equation (30) yields
s the velocity profile, viz,
Nty
% 1 +
" U = < logY + 0(1/r)) (35)
"-_.4 Q
N Ve

,b or in dimensional form we have:
B '}.\"

~¥; /u_ = L yogyt + 6
Tfﬁ u/u, = o gy “en (36)
'zﬁ where

s
%
.J
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§+ =yt + y+/2r;) (37)

Equations (36-37) are precisely those of the Richmond scaling.

In Figure 1 we compare our numerical predictions for the thin clinder
computation of the next subsection with Equations (36-37.). In the
comparison we have lncluded Coles' wake component so that the complete
velocity profile becomes:

1 + 27 nyT

= d s .02 N

u/uT = =~ logy + B + — sin (2 8+) (38)
where we use ¥ = .41, B = 5.0 and ¥ = -.14. Note that the inferred

wake strength T of -.14 implies that the transverse curvature effect
1s similar to a favorable pressure gradient. This point 1s consistent

with the observations of Patell? The overall agreement between the

numerical profile and Equation (38) verifies the perturbation analysis.

5.2 FLOW PAST A WIRE

In this subsection we present results of a numerical computation for
flow past a "wire", viz, a thin cylinder aligned axially with the

freestream. The case we have chosen 1s that experimentally investi-
gated by Yuloin which the Reynolds number based on cylinder radius is

Re, = 15,250 (39)
@)

Unit Reynolds number for the flow is 1.83+10° and measurements were
made between axial distances, x, from 2 feet to 8 feet. At x = 8
feet the ratio of boundary layer thickness to TS is approximately 2
so that this flow includes a moderately "thick" boundary layer.

Computation was initiated at x = 0 from laminar starting conditilons.
The freestream turbulence intensity was adjusted to yield a match
between computed and measured momentum thickness at x = 2 feet.

Figure 11 compares predicted boundary layer thickness, 6, momentum
thickness, 6, shape factor, H, and skin friction, Cps with corres-
ponding measurements. The data shown for &, 6, and H are the original
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data reported by Yu. The skin friction data have been obtained from
Clauser plots rather than using Yu's Preston tube measurements which
are thought to be in errorlS,

As shown, computed and measured shape factor and skin friction differ
by less than 5%. Computed boundary-layer thickness is about 10%

lower than measured while the numerical momentun thickness ultimately
is about 15% lower than measured. The fact that our skin friction

is so close to the measured values while the momentum thickness
discrepancies are much larger leaves us with the same concern exgres-
sed by Pate1;7regarding the two-dimensionality of the experimental
flowfield. The figure also shows computed results for a corresronding
planar boundary layer. As indicated, the primary effects of transverse
curvature are to increase skin frictlion and momentum thickness and to
decrease boundary-layer thickness and shape factor.

Figure 12 compares the computed and measured velocity profiles at the
axial location x = 8 feet. With exception of the points lying between
y+ = 150 and 400, the computed velocity profile fares smoothly through
the data. Even for the four data points lying between y+ = 150 and
400, the maximum difference is less than 5%. Inspection of the
profile for the corresponding planar case shows that the effect of
transverse curvature 1s to alter the slope of the profile, a trend

consistent with that displayed 1n the data.

Thus, for thls constant-pressure flow, the model equations pre-
dict flow properties which are reasonably close to corresponding
measurements. As will be seen in the next subsection, thick

boundary layers experiencing an adverse pressure gradient cannot
be as accurately computed if we restrict ourselves to classical
thin-shear-layer approximations.

N S _,I

g




TETR TR YT EITLTY R

el D o

0
*199J g = X ‘04241 = Lom fUWradilsood) oyq Yi4im ATTBIXE [ sUSTTR JSpPUTTAD

o

urysy e 3sed MOTJ d0J s31TJjodad L£34T00[0A pounstow pue pojndwod Jo uostdedwo) 21 9dnsT

A
0T + 0T 0T 1
|3 € £ € O
[ r _ _ [ _
— G .&
"y
o
ot
~.<ﬂh
_.n.u
- 0T ¢
N
M
! ‘W
= S
™ |
— ..
- ST .
(NX) QAHOSYAN )
- — o2 R
HAAVT AHVANNOH HYNVId = —— %
» daLAdWOD m
-— -

o - m c ’
%
n : 3
+ o
— 1 _ 1 _ l 0t
o e ¢ C ° (] € o 3! U

PR RARIES +—r B o sPuinr LT A, =, ry-v il AT . iR PN IS ™Y ANV PPt § IR APPSR ¢ - ot & vy v v o2



Bl E Al - - T w T TETT T WE, WL Y A YRR Y T8
LA e g s e f- et S ENMICA A AT Tk A S Al Al A N e e S SRS A A .-T

5.3 BODIES WITH ADVERSE PRESSURE GRADIENT

In thls Subsection, we make a "first cut" at two thick axisymmetric
boundary layers with pressure gradient and streamline curvature.

We emphasize that our computatlons are indeed only a first cut as
3j3 experimental measurements indicate nontrivial variation in pressure
across the boundary layers whille we have used a standard boundary-
layer program which assumes 9p/93y = 0. In order to provide a first
estimate of the importance of having variable pressure across the
fnj layer, we have done both computations first using the measured edge-
L pressure distribution and then with the measured surface-pressure

s distribution.

e The two cases considered are the "modified spheroid"18 and the

i "low-drag body"l®

experimentally evaluated by Patel. 1In Subsection
5.3.1 we compare computed and measured integral properties. Sub-

: section 5.3.2 compares computed and measured velocity and Reynolds
A shear-stress profiles for the low-drag body. Next, in Subsection

.. 5.3.3, we compare predicted peak eddy viscosity and mixing length

{ with corresponding measurements. Finally, Subsection 5.3.4 examines
the predicted effect of streamline curvature for the modified

- spheroid.

SR

5.3.1 1Integral Properties

1
5 I
T
2

Figures 13 and 14 compare computed and measured integral properties
for the two axisymmetric bodies. Note that the modified sphericd

..

computation has been initiated at x/L = .662 using the experimentally

‘v‘:r v,
Oy .
“ .8 + *

measured profliles to establish starting profiles. Reynolds number

based on body length 1s Re, = 1.26-106, For the modified sphericd,

L

'AA.".!"

.“.-. A
PR
A

A boundary-layer thickness, 6, exceeds the body radius, ros for all

’éﬁ points beyond about x/L = .925, Similarly for the low-drag bocdy,

>3§ computation has been initlated at x/L = .6, again using the experimen-
Y .

oy tally measured profiles for starting conditions. Reynolds numter,

"

ﬁS Re;, 1s 1-20-106 while 8 exceeds r_ beyond about x/L = .85.

-

fﬁ Focusing first on the modified spheroid, note that the boundary layer
o
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remains attached to x/L = .99 when we use Cpe and separates at x/L =
.942 when we use pr. For both pressure distributlons, the predicted

———— . -
T e s

@ growth of the boundary-layer thickness 1s reascnably close to the
measured trend with the experimental data beyond x/L = .9 1lyinr tetween
the two computed curves. Similarly, the experimental skin-fricticn,

’ Cf, data tend tc fall between the Cpe and pr curves, particularly irn

o the region beyond x/L = .9 where 3p/3y is known from measurements to
be nontrivial. On balance, the pr computation predicts momentum-
thickness, 8, and shape-factor, H, distributions which are clocser to
the corresponding measurements in the interesting (i.e., x/L>.9)

e portion of the flow.

Turning now to Patel's low-drag body, note that the experiment was
designed to avoild any complications attending incipient separation,

such as that observed for the modified spheroid. As shown in Figure

14 neither computation predicts separation and differences between the
two computations are less dramatic than in the modified spherocid case.
As with the preceding computation, predicted overall growth of the
boundary-layer thickness 1s quite close to the measured growth. For
both computations, computed and measured Cf differ by less than 1Z2%.

As with the modified spherold, differences between computed and measured
6 and H distributions are smallest for the pr computation.

e In summary, comparison of predicted and measured integral properties
Indicates that the experimental § and Cf fall between the limiting Cpe
and pr computations. Predicted 9 and H distributions are clcseest to
the corresponding measurements when we use Cp = pr. Hence, 1t aprears

® that in taking a closer look at our predictions, the pr corputations

will provide more 1insight than those using Cpe'

5.3.2 Veloclity and Reynolds-Stress Profiles

®
Because the modified spheroid computation separates, there is little
positive information to be gleaned from detailed comparison of computed
and measured profiles. Hence, in this Subsection, we focus our atten-
° tion on the low-drag body.
¢
Figure 15 compares computed and measured velocity profiles at four axial
-38-
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stations, viz, x/L = .80, .88, .92, .96. As shown, the computed
boundary layer has experienced stronger deceleration than in the
experimental case. Thils 1s unsurprising as we have used the surface-
pressure distribution throughout the layer which is attended by a

larger gradient. Clearly, the overall growth matches that measured.
Even at x/L = .96, differences between computed and measured velocities
are less than 7% of scale.

Figure 16 compares computed and measured Reynolds shear-stress profiles.
Discrepancies between the profiles at x/L = .80 are surprising, parti-
cularly in the light of the close agreement between the velocity
profiles at this station. Overall, the numerical shear-stress profiles
are within about 15% of scale of the measured profiles. The shares

and fullness of the experimental profiles are reasonably well simulated
throughout the tail region of the body.

5.3.3 Turbulence Properties

In thils subsection we concentrate on twoc key features of the turbulence
field which have not been accurately simulated with simpler turbulence
rmodels. Specifically, we examine the variation of peak mixing-length,

zmax’ and eddy viscosity, €max” Figure 17 compares our pr predictions
with values inferred from Patel's data. As shown, for both bodies,
model-predicted lmax and € nax fall off rapidly as we approach the tail

of the body. Considering the 1naccuraciles attending differentiation

of the experimental data required to infer zm and € our predic-~

ax max?
tilons must be considered well within the error band of the data.

5.3.4 Streamline-Curvature Effects

To obtain an estimate of the effects of streamline curvature on our
predictions, we have rerun the pr modified-spheroid computation
without account for streamline curvature. All results presented in
Subsections 5.3.1-5.3.3 include the Wilcox-Chambers20 curvature modi-

fication to the turbulent mixing-energy equation. Figure 18 shows effects
on the velocity profile at x/L = .93. For the computation with no

curvature, the numerical profile passes through all of the measured
points. With curvature included, the velocity profile shows additional

deceleration, consistent with the effect of convex curvature. Note

-4o0-
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that the close agreement between results of the no-curvature computa-
tion and the experimental data is fortuitous as the numerical pressure
gradient 1s larger through much of the boundary layer than it is in
the experimental case. Overall, the effect of curvature for the
modified spheroild is small, giving rise to changes in integal pro-
perties of less than 5%

In summary, results of these two computations indicate the

following.

1. With no modifications to the Wilcox-Rubesin
turbulence model, computed boundary-layer
thickness virtually duplicates measured
thickness for both bodies.

2. Performing the computations with first the
measured boundary-layer-edge pressure
distribution and then with the measured
surface pressure distribution (neglecting
pressure variatiocn across the layer in each
computation) yields skin-friction distribu-
tions which overall fall above and below
measured skin friction, respectively.

3. Shape factor and momentum thickness are in
closer agreement with corresponding measure-
ments when the wall pressure 1s used.

y, For one of the two bodies, our predictions
suggest that streamline curvature plays a
relatively minor role.

Thus, we conclude that the primary differences between the "thick"
and the "thin" boundary layer are primarily caused by the pressure
gradient across the former, i.e., 9p/3y. In the next Subsection,

we devise a straightforward method for including 9p/dy in a standard
boundary-layer computation.

5.4 PRESSURE VARIATION IN A THICK BOUNDARY LAYER

Results of the preceding Subsection demonstrate the importance of
pressure varlations across a thick axisymmetric boundary layer,
Recapitulating, we found that in using a conventional boundary

-4y
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layer program, results obtalned differ depending upon the pressure
distribution used. On the one hand, using the measured freestream
pressure distribution tends to underpredict momentum thickness and
to overpredict skin friction. On the other hand, using the measur-
ed surface pressure tends to reverse the situation with momentum
thickness overpredicted and skin friction underpredicted. Pre-

sumably, permitting the pressure to vary across the layer will

yleld numerical predictions which fall somewhere between these

two limits. Because the experimental data lle between these two
limits, predictions should then lie quite close to corresponding
measurements. The object of this Subsection is to devise a method,
compatible with a conventional boundary-layer marching algorithm,

Sﬁ for predicting the pressure variation through a thick boundary layer.

In order to account for nonzero 3p/3y 1n a boundary layer, we must,
in principle, solve the vertical as well as the streamwise momentum
*5 equation. For a thick boundary layer on a surface with curvature
K, Patel21 has shown that the vertical momentum and continuity

equations are:

S u dv/3x + hvav/dy - xu? + % ap/dy = O (40)
d(ru)/d9x + 3(rhv)/dy = 0 (41)
‘i: where u and v denote streamwise and vertical velocity components,

X and y are streamwise and normal distances,p 1is density, p is
pressure, r 1s radial distance, and h 1s the metric defined by

h =14 ky (42)

The curvature, Kk, 1s understood to be positive for convex surfaces
and negative for concave surfaces.

One approach to solving for the pressure would be to discretize
Equation (40) and solve for p once v is known from the standard

boundary-layer solution. This 1s not very convenlent when the pro-
gram is formulated in terms of Levy-Lees varlables, however, and

all of our programs use these variables. As an alternative, we have |



—

chosen to implement an integral solution approach. Proceeding

in the classical manner, we deflne the following boundary-layer
thickness parameters:

st Aed e A b

4

Displacement Thickness.....ré¥* = fg (l—u/ue)rdy (43) X

1

U-Momentum Thickness...... .T8 = fg %— (l-u/ue)rdy (44) %

V-Momentum Thickness....... rev = Ig %— (l-v/ve)rdy (4s) ]
e

where § is the boundary-layer thickness. Then, introducing the
following gquantities:

r, =T, + Scosd |, h, = 1+ «x8, ré = [

o%r o ray (u6)

FLRICVCE N WU

the integral form of Equations (40-41) is as follows.

Y LI

Ty [heve - uedﬁ/dx] + d[ro(éir - §¥%) ue] /dx = 0 (47)
- - * 2 Rk _ -
dfr u v 6 ]/dx - r (8 - 8§*)u dv /dx + «kr_ul(s -6¥-6) :
= fd h(Bp/ay)rdy (48) :
oP :
In order to make further headway we must postulate profiles for v 7
and p. Close examination of data for two thick axisymmetric bodiesl8’19 %
shows that at all stations for which data were tabulated, both v 1
and p can be closely approximated with simple linear profiles, viz, i
v=v(y/8§) and p = P * (pw—pe)(l-y/G) (49) A

Thus, the definition of Bv 1s altered in the obvious way while
Equation (48) simplifies to:

dfr u,v,8,]/dx - r (8 -8*)u dv_/dx + xr ul(s -5¥%-8) :

= (ru2/26)[s #5xs(6 ~6/1)] (Ccp, -Cp,) (50)

ey A aiaataaa
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In order to test this formulation, we have applied Equations (47

and 50) to three flows, in each case working with measured flow

properties. The three cases are Yu's16

modified spheroid18 and Patel's low-drag bodylg, respectively.
For Yu's wire flow, we find that the difference between edge and

surface pressure coefficients is of order 10‘“, as would be ex-

flow over a wire, Patel's

pected for thls constant pressure case. Figures 19 and 20 compare
predicted and measured pressure coefficient difference for the

two Patel bodies. Considering the numerical crudeness attending
differentiation of the data, particularly Voo the agreement
between the predictions of Equation (50) and the measured Cp
difference 1s excellent.

Note that Equations 47 and 50 are not restricted to axisymmetric
boundary layers. The limiting two-dimensiocnal forms fcllow by
formally replacing ro by r, and ér by &§. The equations can te
generalized in a straightforward manner for three-dimensicral

boundary layers.
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55 6. DISCUSSION

:! L \J We have developed a new three-dimensional boundary-layer prograrm,
j EDDY3, suitable for application to arbitrary ship hulls. The pro-

. gram embodies the Wilcox-Rubesin two-equation turbulence model and

uses an accurate, efficient numerical procedure based on the Elot-
tner "variable-grid" method coupled with the Krause explicit mar-

ching algorithm.

Results described in Sections 3 and 4 show that very accurate num-

erical results can be obtalned with relatively coarse finite-dif-

5 ference grids. Computing times are guite modest as a complete shig
@: null computation can be done with about a half-hour of UNIVAC 110€
- execution time. This corresponds to approximately three minutes on
ho a CDC 7600 computer. Additionally, the numerical algorithm dis-

- plays no noticible difficulty when reverse crossflow is present.

} Comparison of computea and measured flow properties for the C&FA

® Model 720 and the ESVA Tanker show that, on the one hand, cur rre-
dictions are quite a bit c¢loser to measurements than thcse repcrted
in the 1980 SSPA-ITTC Workshop on Ship Boundary Layers. On tne

other hand, differences are too large, particularly near the shig

o stern, for us to c¢laim the problem is solved. The fact that the
boundary layer becomes "thick" approaching the stern is no doubt

the cause of the differences observed between theory and experiment.

) Our analysis of thick axisymmetric boundary layers in Section 5
' shows that, in order to obtain accurate "thick" boundary-layer pre-
dictions, accounting for the normal pressure gradient, 39g/dyv,
probably 1s all that 1s needed above and beyond conventicnal thin-
-!O shear-layer approximations. Streamline curvature variation appears

to play a relatively minor role in the "thick" boundary layer.

Additional research is needed to confirm the importance of 3g/9y in
ship-hull computations. The formalism developed in Subsection £.%

-50-
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can be easily generalized for a 3-D boundary layer and shculd be ]
included in EDDY3. We could then repeat the two ship-hull com-
putations of Section 4 to confirm our hypothesis. Additicnally,

it would be instructive to use measured freestream flow conditicns

in the computations.
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